Warm up

1. Add and subtract 2π to each fraction below:
 a) $2\pi/3$ b) $12\pi/13$ c) $9\pi/4$ d) $7\pi/8$

2) Using the unit circle as a reference, name what quadrant each fraction is in:
 a) $13\pi/8$ b) $9\pi/15$ c) $8\pi/9$ d) $11\pi/13$
Objective: Find an equation of a Sin and Cos function given values or graph.

\[\frac{2\pi}{b} \]

Period = \(\frac{2\pi}{b} \) so \(b = \frac{2\pi}{\text{period}} \)

Phase shift is \(-\frac{c}{b}\) so \(c = -b(\text{phase shift}) \)

\[-b \cdot (p.s.) \]
1. Find a Cosine function that has a period of 4π and an amplitude of 3

$$y = \pm 3 \cos \left(\frac{1}{2} \Theta \right) \quad \frac{2\pi}{\frac{1}{2}} = 2$$

2. Sine function with a period of $\pi/2$, a phase shift of $\pi/4$, a vertical shift of 4, and an amplitude of 1/2.

$$y = \pm \frac{1}{2} \sin \left(\left(\Theta - \frac{\pi}{4} \right) \right) + 4 \quad \frac{2\pi}{\frac{\pi}{2}} = 4$$
3. Sine function who has a period of 3, a phase shift of 2, a vertical shift of 3, and an amplitude of 3.

Practice Worksheet
To find coterminal angles you add or subtract 360° or 2π

\[-330^\circ \quad 30^\circ \quad 390^\circ\]

\[-\frac{5\pi}{4} \quad \frac{3\pi}{4} \quad \frac{11\pi}{4}\]
Reference angle an angle that measure the distance from where an angle terminates and the closest x axis.

Steps for finding a reference angle.
1. Find a coterminal angle between 0 and 360° or 0 and 2π
2. If terminates in the 1st quadrant it equals itself
3. If terminates in the 2nd quadrant it is $180^\circ - \theta$
4. If terminates in the 3rd quadrant it is $\theta - 180^\circ$
5. If terminates in the 4th quadrant it is $360^\circ - \theta$

\[\begin{array}{c}
\frac{5\pi}{4} \\
\frac{13\pi}{4} \\
\frac{15\pi}{8} \\
\frac{7\pi}{8} \\
\frac{\pi}{4}
\end{array}\]
Objective: Find the trig values for a right triangle.

The six trig functions are

\[\sin \phi = \frac{\sqrt{12}}{16} \quad \csc \phi = \frac{16}{\sqrt{12}} \]

\[\cos \phi = \frac{3}{4} \quad \sec \phi = \frac{4}{3} \]

\[\tan \phi = \frac{\sqrt{12}}{12} \quad \cot \phi = \frac{12}{\sqrt{12}} \]

\[\sqrt{a^2 + b^2} = c \quad 16^2 + 12^2 = 256 \]
Find the six trig values given one

Examples

1. \(\tan \theta = \frac{7}{5} \)
 \[
 \begin{align*}
 \sin \theta &= \frac{7}{\sqrt{41}} \\
 \cos \theta &= \frac{5}{\sqrt{41}} \\
 \cot \theta &= \frac{5}{7}
 \end{align*}
 \]

2. Secant \(\theta = \frac{7}{3} \)
Evaluate trig functions by a point on the terminal side

1. Find the six trig values of an angle that terminates at (3, -2)
2. Find the six trig values given

\[
\cos \theta = \frac{1}{3} \quad \text{and} \quad \tan \theta < 0
\]

\[
\csc \theta = \frac{4}{3} \quad \text{and} \quad \cot \theta > 0
\]
Wrap up

1) Find one positive and negative coterminal angle for:
 a) -30° b) 2\pi/3 c) 13\pi/8 d) 245° e) 7\pi/6

2) What is the reference angle for each angle in #1?

3) Find the six trig values given
 a) \sin\theta = 4/7 and \tan\theta > 0
 b) \sec\theta = 6/5 and \tan\theta < 0