Warm up

Work on 31-39 odds on HW worksheet

U-28 by 4'5 32-40 ever5

Homework and Warm up

Answers to Limits Practice

1)	-1
5)	2

9) 0

13) 2

17) -3

21) 0

25) $\frac{1}{12}$

29) 1

22) 2

33) -2

37) 4

41) 5

2) 2

6) 2

10) 5

14) 0

18) $-\frac{1}{2}$

22) $\frac{5}{2}$

26) 3

30) $\frac{1}{5}$

34) $\frac{1}{2}$

38) $\frac{1}{2}$

42) -2

3) 2

7) -5

11) -7

15) $\frac{11}{2}$

19) 3

23) 1

27) $\frac{6}{25}$

31) -3

35) -1

39) Does not exist.

28) $\frac{50}{29}$

4) 2

8) -4

12) 0

16) -2

20) 0

24) 5

32) $-\frac{1}{4}$

36) -1

40) Does not exist.

ROBLEMS

Use the graph in Fig. 10 to determine the following limits.

(b)
$$\lim_{x\to 2} f(x)$$

(c)
$$\lim_{x \to 3} f(x)$$

(d)
$$\lim_{x \to 4} f(x)$$

2. Use the graph in Fig. 11 to determine the following limits.

- $\lim_{x\to 1} f(x)$ (a)
- (b) $\lim_{x\to 2} f(x)$
- $\lim_{x \to 3} f(x)$ 2 (d) $\lim_{x \to 4} f(x)$ (c)

Properties of limits

Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$$\lim_{x \to c} f(x) = L$$

$$\lim_{x \to c} g(x) = K$$

$$\lim_{x \to c} [b f(x)] = bL$$

$$\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$$

$$\lim_{x \to c} [f(x)g(x)] = LK$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \quad \text{provided } K \neq 0$$

$$\lim_{x \to c} [f(x)]^n = L^n$$

Use properties of limits to evaluate

$$\lim_{x \to c} f(x) = 3, \quad \lim_{x \to c} g(x) = 6$$

(a)
$$\lim_{x \to c} [-2g(x)]$$

(a)
$$\lim_{x \to c} [-2g(x)]$$
 (b) $\lim_{x \to c} [f(x) + g(x)]$

(c)
$$\lim_{x \to c} \frac{f(x)}{g(x)}$$
 (d) $\lim_{x \to c} \sqrt{f(x)}$

(d)
$$\lim_{x \to c} \sqrt{f(x)}$$

$$\lim_{x \to c} f(x) = 5, \quad \lim_{x \to c} g(x) = -2$$

(a)
$$\lim_{x \to c} [f(x) + g(x)]^2$$
 (b) $\lim_{x \to c} [6f(x)g(x)]$

(b)
$$\lim_{x \to c} [6f(x)g(x)]$$

(c)
$$\lim_{x \to c} \frac{5g(x)}{4f(x)}$$
 (d) $\lim_{x \to c} \frac{1}{\sqrt{f(x)}}$

(d)
$$\lim_{x \to c} \frac{1}{\sqrt{f(x)}}$$

ONE-SIDED LIMITS

$$Let f(x) = \frac{x^3 - x}{x - 1}.$$

What happens to the values of f(x) as x approaches 1 from the **left** (i.e., *x* increases to 1)? 2

x	0	0.5	0.75	0.9	0.99	0.999		
f(x)	0	0.75	1.3125	1.71	1.9701	1.997001		

It looks like the values of f(x) are approaching 2.

What happens to the values of f(x) as x approaches 1 from the **right** (i.e., *x* decreases to 1)?

. '	(1.Ε., λ (aeci	eases t	01):	19/4			0
	x	2	1.5	1.25	1.1	1.01	1.001	12.
	f(x)	6	3.75	2.8125	2.31	2.0301	2.003001	is a V
v	alues o	of f (:	x) are a	approach	ing 2.		1:31	(K&)

The values of f(x) are approaching 2.

$$Let f(x) = \frac{x^3 - x}{x - 1}.$$

This is a bit easier to see graphically:

So, the value of f(x) approaches 2 (although it will never actually be equal to 2) as x approaches 1 from either the right or the left.

Definition (intuitive)

Let f be a function and c a real number.

We say that a *finite* real number L is the **limit of** f **as** x **approaches** c **from the left** if the value of f(x) approaches L as x **increases** to c (approaches c from the left).

We write this as

$$\lim_{x \to c^{-}} f(x) = L.$$

We say that L is the **limit of** f **as** x **approaches** c **from the right** if the value of f(x) approaches R as x **decreases** to c (approaches c from the right).

We write this as

$$\lim_{x \to c^+} f(x) = L.$$

Use a table limits:

(1) $\lim_{x \to 7^{-}} 2x +$

x	6	6.5	6.75	6.9	6.99	6.999]
f(x)	17	18	18.5	18.8	18.98	18.998	
						\	1)
					(V x	1)(4-	
						-571	(1)
χ^2 -	1			•	14-	ひ) 🔀	

(2) $\lim_{x \to -1^+} \frac{x^2 - 1}{x^2 - x - 2} =$

						-0.999
f(x)	0.5	0.6	0.63	0.655	0.6655	0.66655

Below is the graph of a function f(x):

Use this graph to determine the following one-sided limits:

(1)
$$\lim_{x \to -1.5^{-}} f(x) \sim (2) \lim_{x \to 0^{-}} f(x) \sim (2)$$

(2)
$$\lim_{x \to 0^{-}} f(x)$$
 2

(3)
$$\lim_{x \to 2^{-}} f(x) - Z$$

(4)
$$\lim_{x \to -1.5^+} f(x) / 2$$

$$(5) \lim_{x \to 0^+} f(x) \bigcirc$$

EXAMPLE: Use the graph of f(x) below to find the following:

- b.) f(2) = undef. For this one, there is no closed circle at the x = 2. So, nothing is defined here.
- c.) f(-2) = undef. There is no closed circles here either. We have a vertical asymptote, so nothing will be defined here.
- d.) $\lim_{x\to 2^+} f(x) = \frac{1}{2}$ You are seeing what the y-value is approaching as x approaches 2 from the right.
- e.) $\lim_{x\to 2^{-}} f(x) = \frac{1}{2}$ You are seeing what the y-value is approaching as x approaches 2 from the left.
- f.) $\lim_{x\to 2} f(x) = \frac{1}{2}$ Since the limit from the left and right are the same then our limit exists and is also equal to 1.
- g.) $\lim_{x\to 0^+} f(x) = 4$ You are seeing what the y-value is approaching as x approaches 0 from the right.
- h.) $\lim_{x\to 0^-} f(x) = \frac{1}{2}$ You are seeing what the y-value is approaching as x approaches 0 from the left.
- i.) $\lim_{x\to 0} f(x) = \text{d.n.e.}$ Since the limit from the left and from the right are not the same, the limit does not exist.
- g.) $\lim_{x\to -2} f(x) = \text{d.n.e.}$ Since the limit from the left and from the right are not the same, the limit does not exist.

Limits at infinity

Evaluate each limit.

5)
$$\lim_{x \to -\infty} (x^3 - 4x^2 + 5)$$

 $-\infty$

7)
$$\lim_{x \to \infty} \frac{x^3}{4x^2 + 3}$$

9)
$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 3}}{2x + 3}$$

$$-\frac{\sqrt{2}}{2}$$

10)
$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{4x + 2}$$

